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1. Summary

This semiannual report briefly summarizes research activities
performed during the period of June 26, 1993 through August 31,
1993. We developed the Robust Stability of Systems where transfer
function or Characteristic polynomial are multilinear affine
functions of parameters of interest in two directions, Algorithmic
and Theoretical. In the algorithmic direction, a new approach that
reduces the computational burden of checking the robust stability
of the system with multilinear uncertainty is found. This
technique is called "Stability by linear process." In fact, the
"Stability by linear process" we describe here gives an algorithm.
But we still have something else to be done. In analysis, we
obtained a robustness criterion for the family of polynomials with
coefficients of multilinear affine function in the coefficient
space and obtained the result for the robust stability of diamond
families of polynomials with complex coefficients also. We
obtained the limited results for SPR design and we provide a
framework for solving ACS. Finally, copies of the outline of our
results are provided in the appendix. Also, there is
administration issue in the appendix.

2.1 Parametric Robust Stability.

Let p(s,Q) = _ni=0ai(q) Si , q 6 Q C R"

and ai(q) are multilinear affine functions.

_[p(s,Q)] C C °_ _* p(s,Q) 6 H _ 0 _ p(j_, Q)

I Hurwitz and Routh Icriterion

In this section, we develop

p(s,Q) 6 H _ 0 _ p(j_, Q)

by algorithm, and

a [p(s,Q)] C C _ p(s,Q) 6 H

J

As we know

I Zero exclusionprinciple

by theoretical analysis.



2.1.1 Stability by linear process.

Our problem is to find a quick way to determine if the origin
0 in the complex plane C within the image of hyperrectangle Q C R"

under the mapping

p(j_,q) = f(q) + g(q) j for fixed

Where f(q) and g(q) are multilinear affine functions for V q E Q.

We completely utilize linearity of multilinear affine function

to study the line segments parallel to axis in Q mapping to the

line segments in C. In accordance with our investigation, these

line segments in C can be classified two kinds, one is so-called

"perpendicular" and the other is so-called "non-perpendicular."

Now we define that a line segment i' in C is said to be a

perpendicular if there is a point A'on i' such that the line

through O and A', OA' perpendicular to i' If not, then this line

segment i' is called non-perpendicular. (see figure i)
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Figure 1

In Figure 1 (a) and (b) are the case of perpendicular; (c) is

the case of non-perpendicular.

It is evident that (i) if all i' in C are perpendicular then

0 6 p(j_, Q), (2) if all i' in C are non-perpendicular then 0

p(j_, Q). Certainly, if we check out all i' in c whether

perpendicular or not we would suffer from the heavy computational

burden. Thus, our main goal is to develop a computational feasible

algorithm for it. The algorithm is indicated in the appendix and

our conjectures appear in the appendix also.



2.1.2 Family of polynomials with the coefficients of multilinear
affine function.

For the family of characteristic polynomials

p(s,q) = _ni=0 ai(q) si V q e Q C R n

Where ai(q) is multilinear affine function for each i, and its zeros

_[p(s,Q)] = {z e C : p(z,Q) = 0}

Our problem is finding necessary and sufficient conditions for

_[p(s,Q)] C C °_ ,

That is, p(s, Q) e Hurwitz.

As we know, the image of Q in the coefficient space,

a(Q) = {a(q) : a(q) = (ao(q), al(q), '' ", an(q)), q _ Q} C R n+l

is not necessarily convex. The stability of a whole family of

polynomials can not be inferenced from the stability of just the

set's vertices, edges or boundaries. But consider the box

A* C R "+I ,

A* = [A-o, A+o] x [A-l, A+l] x ''- x [A-,, A+n], and

A-i = minq,Q[a i(q) ] , A+i = maXq,Q[a i(q) ]

representing polynomials with independently varying coefficients in

the intervals defined by the minimum and maximum values of the

multilinear affine coefficient functions, ai(q) , defined on Q.

For new box A*, we have a family of polynomials

p(s,A*)={ p(s,A) : p(s,A)=_"i= 0 Aisi,A=(Ao,AI,...,A.),ACA *}

and it becomes interval polynomials. Then we have

p(s,Q) C p(s,A*)

While Kharitonov' s Theorem guarantees us that the interval

polynomials in A ° are Hurwit z if and only if Kharitonov' s

polynomials {Kn(-) , K12(-), K21(-), K22(-) } C A* are Hurwitz.

It is evident that

p(s,A*) e H = p(s,Q) e H
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Therefore we have the following theorem:

Theorem i.

p(s,Q) 6 H if and only if Kharitonov's polynomials

{Kll ( •) , KI2 (• ) , K21 ( •) , K n ( •) } C A* are Hurwitz.

where A* = [A-0, A+0] x ..- x [_n, A+. ]

and A°: = minq_Q ai(q) ; A+i = maXq_Q ai(q), i = 0,i, ...,n.

2.1.3 Diamond families of polynomials with complex coefficients.

As we know, in some cases the stability of a whole family of

polynomials can be inferred from the stability of just the set's

vertices, edges or boundaries. Here, we consider the case of the

diamond family of polynomials. We have then a result as following:

Theorem i. Let the complex diamond polynomial family be

W(s) = {p(s) : p(s) = _ni=0(ai + jbi) s:

Eni=o(]ai-_.il + lB,]) _ r} C pn

Where P" = {p(s) : p(s) = F_ni=o(ai+jbi) s i, a n + jb n _ 0}

and fii, hi are the coefficients of the nominal polynomial

Po (s) = _ni=o (ai + J_i )si

Then W(s) e H if and only if pl(s), pz(S), ''' , ps(s) e H

Where pl(s) = po(S) + r

p2(s) = po(s) - r

p3(s) = po(S) + jr

pg(s) = po(S) - jr

ps(s) = Po(S) + rsn

P6(S) = po(S) - rnn

pv(S) = po(S) + jrsn

ps(s) = Po(S) - jrsn

Theorem 2.

Let W°(s) = {p(s) : p(s) = _ni=0 (ai + Jbi )si, ai _ fii, bi _ hi,

i = 0,1,---,n and _"i=0[ai-_i) + (bi-_i)] _ r} C pn

W' (s) e H if and only if 4 vertices are Hurwitz and 4 line segments

are Hurwitz.



Details please see Appendix.

2.2 Strictly Positive Real Functions (SPR) for Robust Design.

We have known that the sets

SPR{ni(s) } = {d(s) : Re{ni(j_)/d(j_)}>0 and

ni(s) _ H for i = 1,2}

are convex cones, and the convex combination of n,(s) and n2(s)

keeping Hurwitz is only a necessary condition for existence of d(s)

such that both nl(s)/d(s) and n2(s)/d(s) are SPR. Unfortunately, we
could not know if it is also a sufficient condition.

For this, we need to describe the set SPR{n(s)} in some way so that

to prove SPR{nl(s) } _ SPR {n2(s) } _ _. Even though we have had 5

definitions for SPR{n(s)}, they would not work for our problem.

Recently, we find the following new ways to define SPR{n(s)}.

Definition i. SPR{n(s) }={d(s) : (a0+j_b0, • • ",an+j_bn) 6H,V_R}

where n (s) =_ni=0aisi d (s) = _ni=0bisi

NOW, we may then answer our question

SPR{n1(s) }NSPR{nE(s) }_ for kn,(s)+(l-A)n2(s) 6 H.

X_ [0,1].

In fact, consider

SPR{Anl(s)+(l-k)n2(s) }={d(s): [knl(s)+(l-A)n2(s)]+jo_(s)EH V=_R} by

our definition 1

Then, we have that An,(s)+(l-A)n2(s)+Ajc_d(s)+(l-k)j_d(s ) eH

•". Anl(s)+(l-k)j_d(s)+(l-A)n2(s)+Aj_d(s) eH

•". An1(s)+(l-A)joe_(s) eH and (l-A)n2(s)+kjoe_(s) eH

Therefore there exists d(s) 6 SPR{n 1(s) }NSPR{n 2(s) }

That is, there exists d(s) such that n1(s)/d(s) and n2(s)/d(s) are

SPR. We will develop further results.

7



2.3 ACS.

After reviewing the XTE Subsystem Analysis Results Report, we

have realized that ACS is a flexible body linear system with time-

varying, uncertain parameter and with the uncertain disturbance of

same movements. Therefore, ACS would be in the form

X(t)=[A(t)+AA(r(t)]X(t)+[B(t)+nB(s(t))]U(t)+D(t)W(t) (i)

where AA(r(t)) and AB(s(t)) are yielded by the parameters and the

control U(t). W(t) is the disturbance of some moments. Thus, our

framework for analyzing ACS would be the following:

i. Construct state equations (i) in time domain for ACS. That is,

we should look for the conditions for A, AA; B, nB; D, W such that

the control U(t) stabilizes ACS. For the system (I), we usually

adopt the Quadratic cost functional

Jmi. = I®0[Y(t)Ty (t) + U(t)TRU(t)]dt

where R is a positive definite

to find the solution of its corresponding Riccati's equation to

obtain the robustness conditions for this system.

2. Determine Stability Margin for ACS.

That is, to find the best U(t) such that the system ACS

maintains asymptotic stability in the region of the uncertain

parameters and the uncertain disturbances. Therefore we need to

define a radius p(p,u) and find

Ma_, u Minp,. {p (p,u) }

Where u is a control, p is a disturbation

Thus, H. norm would be considered.

3. Adjust and revise u(t) according to the reality of ACS.
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